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Abstract
Objective: The accurate prediction of seizure freedom after epilepsy surgery 
remains challenging. We investigated if (1) training more complex models, (2) 
recruiting larger sample sizes, or (3) using data-driven selection of clinical pre-
dictors would improve our ability to predict postoperative seizure outcome using 
clinical features. We also conducted the first substantial external validation of a 
machine learning model trained to predict postoperative seizure outcome.
Methods: We performed a retrospective cohort study of 797 children who had 
undergone resective or disconnective epilepsy surgery at a tertiary center. We 
extracted patient information from medical records and trained three models—a 
logistic regression, a multilayer perceptron, and an XGBoost model—to predict 
1-year postoperative seizure outcome on our data set. We evaluated the perfor-
mance of a recently published XGBoost model on the same patients. We further 
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1   |   INTRODUCTION

Despite careful evaluation, up to one third of patients 
with drug-resistant epilepsy are not rendered seizure-free 
through surgery.1 This underscores the need to identify 
which patients are likely to benefit from surgery before 
the intervention has been carried out.

Surgical candidate selection is typically decided by a 
multidisciplinary team. This form of expert clinical judg-
ment relies on experience and available evidence, and 
achieves a moderate degree of accuracy when predicting 
surgical success.2 To aid clinical judgment, some studies 
have reported average estimates of seizure freedom for 
specific types of epilepsy (e.g., temporal lobe epilepsy).1 
Other studies have focused on identifying multiple predic-
tors of postoperative seizure outcome, without taking into 
account how these predictors may interact.1

In an effort to synthesize patient characteristics and 
provide objective predictions of seizure freedom, research-
ers have developed statistical models and calculated risk 
scores that can generate individualized predictions of 
outcome.3–5 These have included the Epilepsy Surgery 
Nomogram,3 the modified Seizure Freedom Score,4 and the 

investigated the impact of sample size on model performance, using learning 
curve analysis to estimate performance at samples up to N = 2000. Finally, we 
examined the impact of predictor selection on model performance.
Results: Our logistic regression achieved an accuracy of 72% (95% confidence in-
terval [CI] = 68%–75%, area under the curve [AUC] = .72), whereas our multilayer 
perceptron and XGBoost both achieved accuracies of 71% (95% CIMLP = 67%–74%, 
AUCMLP = .70; 95% CIXGBoost own = 68%–75%, AUCXGBoost own = .70). There was no 
significant difference in performance between our three models (all p > .4) and 
they all performed better than the external XGBoost, which achieved an accuracy 
of 63% (95% CI = 59%–67%, AUC = .62; pLR = .005, pMLP = .01, pXGBoost own = .01) on 
our data. All models showed improved performance with increasing sample size, 
but limited improvements beyond our current sample. The best model perfor-
mance was achieved with data-driven feature selection.
Significance: We show that neither the deployment of complex machine learn-
ing models nor the assembly of thousands of patients alone is likely to generate 
significant improvements in our ability to predict postoperative seizure freedom. 
We instead propose that improved feature selection alongside collaboration, data 
standardization, and model sharing is required to advance the field.

K E Y W O R D S

epilepsy surgery, machine learning, pediatric, prediction

Key Points

•	 We trained three models – a logistic regression, a 
multilayer perceptron, and an XGBoost model –  
to predict seizure outcome and found that they 
performed equally well (AUC = .70-.72).

•	 We applied a previously published machine 
learning model to our center’s patients and 
found that it underperformed (AUC = .62 on 
our cohort vs AUC = .73-.74 on the original 
cohorts).

•	 Expanding our cohort beyond its current size, 
up to sample sizes of N = 2000, would not pro-
vide substantial gains in model performance.

•	 We were able to improve model performance 
through data-driven feature selection.

•	 Future improvements in our ability to predict 
outcome will require improved feature selec-
tion, collaboration between epilepsy surgery 
services, data standardization, and model 
sharing.
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Epilepsy Surgery Grading Scale.5 These tools do not, how-
ever, perform better than clinical judgment.2,6 Researchers 
are, therefore, increasingly turning to machine learning in 
an attempt to improve prediction accuracy.

Machine learning is being leveraged within the realm 
of clinical research at an exponential pace. The epilepsy 
surgery pathway generates a plethora of diverse data. As 
such, it would seem to create an ideal opportunity for the 
application of machine learning technology. Several ma-
chine learning models have indeed been developed to date 
to predict seizure outcome.7–29 The majority of these mod-
els have, however, been trained on relatively small sample 
sizes (N < 100)7,8,10,11,13–16,18–20,22,24–29 and, therefore, have 
a high risk of “overfitting” (a model overfits when it mod-
els the training data set too closely, performing well on 
this data set but consequently underperforming on new, 
“unseen” data sets).30,31 Model training sets have also 
been composed almost exclusively of temporal lobe sur-
gery patients,8–11,13–18,21–27,29 often relied on postoperative 
factors,7,10,12,23,25–27 and frequently utilized postprocessing 
neuroimaging analyses that cannot be replicated readily 
by others.11,13–18,20,21,25,27–29 As such, many existing models 
may be difficult to incorporate into routine preoperative 
evaluation. Perhaps more importantly still, none of these 
models have been externally validated on a substantial co-
hort.17,20 It is, therefore, unknown how well they would 
perform if used by another surgery center, and whether 
their adoption as a replacement for traditional statistical 
modeling approaches is justified.

To advance this field, we asked whether (1) more com-
plex models, (2) larger sample sizes, or (3) better selection 

of clinical predictors would improve our ability to predict 
postoperative seizure outcome (Figure 1). To address the 
first question, we trained three different models—a tradi-
tional logistic regression and two machine learning mod-
els—to predict seizure outcome on our data set. We also 
tested the performance of an external, pre-trained ma-
chine learning model12 on our data set and compared its 
performance to that of our models. To address the influ-
ence of sample size, we investigated how varying sample 
size—both within and extrapolating beyond our current 
cohort—impacted model performance. To address the 
influence of number and type of clinical predictors, we 
investigated how the inclusion of different predictors af-
fected model performance.

2   |   MATERIALS AND METHODS

2.1  |  Patient cohort

We retrospectively reviewed medical records for all chil-
dren who underwent epilepsy surgery at Great Ormond 
Street Hospital (GOSH; London, UK) from January 1, 
2000, through December 31, 2018. We included patients 
who underwent surgical resection or disconnection. We 
excluded palliative procedures (corpus callosotomy and 
multiple subpial transections), as well as neuromodula-
tion (deep brain stimulation and vagus nerve stimulation) 
and thermocoagulation procedures. If patients had under-
gone multiple surgeries over the course of the study pe-
riod, we included only their first surgery.

F I G U R E  1   Study overview. We investigated the impact of model type, sample size, and feature selection on our ability to accurately 
predict postoperative seizure outcome.
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2.2  |  Data set description

We retrieved medical records and extracted the following 
information: patient demographics, epilepsy character-
istics, preoperative magnetic resonance imaging (MRI) 
findings, preoperative interictal and ictal electroencepha-
lography (EEG) characteristics, preoperative antiseizure 
medication (ASM; including both total number of ASM 
trialed from time of epilepsy onset to time of preoperative  
evaluation, as well as number of ASM at time of preopera-
tive evaluation), surgery details, genetic results, and histo-
pathology diagnosis. A complete list of variables extracted 
and information about how we categorized these data can 
be found in Appendix S1.

We classified patients as either seizure-free (including 
no auras) or not seizure-free at 1-year postoperative fol-
low-up. We also recorded if patients were receiving, wean-
ing, or off ASMs at this time point.

2.3  |  Statistical analysis

We calculated the descriptive statistics for the cohort and 
presented these using mean with standard deviation, me-
dian with interquartile range, and count with proportion, 
as appropriate.

We checked if continuous data were normally distrib-
uted using Shapiro–Wilk tests.32 None of the continuous 
variables were normally distributed. We, therefore, inves-
tigated associations between demographic, clinical, and 
surgical variables using the Mann–Whitney U, Kruskal–
Wallis H, chi-square test of independence, and Spearman's 
rank correlation coefficient, as appropriate. All tests were 
two-tailed, and we set the threshold for significance a pri-
ori at p < .05. We corrected for multiple comparisons using 
the Holm method.33

We performed univariable logistic regression analy-
ses to investigate which clinical variables predicted sei-
zure outcome at 1-year postoperative follow-up. In the 
case of categorical variables, the group known to have 
the highest seizure freedom rate (according to past lit-
erature) was used as the reference category. All other 
groups were then compared to this reference category 
to determine if they were significantly less (or more) 
likely to achieve seizure freedom through surgery. For 
example, “unilateral MRI abnormalities” was selected as 
the reference category for the categorical variable “MRI 
bilaterality,” and we investigated whether those with 
“bilateral MRI abnormalities” were significantly less (or 
more) likely to be seizure-free after surgery. We again 
corrected for multiple comparisons using the Holm 
method.33

2.3.1  |  Effect of model type on model 
performance

We performed a multivariable logistic regression (LR) 
with independent variables that (1) could be obtained 
preoperatively and (2) were found to be predictive of 
seizure outcome. We developed a second version of this 
model, in which MRI diagnosis was replaced with histo-
pathology diagnosis, to determine if this affected model 
performance.

We used the same predictors to train two machine 
learning models: a multilayer perceptron (MLP) and an 
XGBoost model. We chose an MLP due to its high pre-
dictive performance, allowing for nonlinear interactions 
between input variables. We trained the MLP with two 
hidden layers, with 5 and 10 hidden neurons respectively, 
balancing the need for sufficient complexity to learn fea-
ture interactions across multiple features, while limiting 
the capacity of the network to overfit to the training data. 
We chose an XGBoost model to ensure that we could com-
pare the performance of this to the performance of the 
XGBoost model published by Yossofzai et al.12

After training our own three models, we applied the 
XGBoost model by Yossofzai et al.12 to the same patient 
cohort. We evaluated the performance of all models using 
stratified 10-fold cross-validation. We used a stratified 
approach to address the outcome imbalance observed in 
our cohort. We calculated the null accuracy (the accuracy 
the model would achieve if it always predicted the more 
commonly occurring outcome in our cohort, i.e., seizure-
free), the tested model accuracy, and the area under the 
receiver-operating characteristic (ROC) curve (AUC) for 
each model. We reported both the mean AUC obtained 
across all 10 folds as well as the AUC obtained from each 
individual fold. We compared the accuracies of the respec-
tive models using McNemar's test.

2.3.2  |  Effect of sample size on model 
performance

We investigated how sample size affected model perfor-
mance by using a previously described learning curve 
analysis approach.34 First, we trained our models on 38 
different sample sizes, starting at N = 20 and finishing at 
N = 700 patients. At each sample size, we evaluated model 
performance, specifically model accuracy. This allowed 
us to create a learning curve, plotting model performance 
against sample size. We then chose an inverse power law 
function to model the learning curve. We used this func-
tion to predict model performance on expanded sample 
sizes of up to N = 2000.
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2.3.3  |  Effect of clinical predictors on model 
performance

We explored how the number of included predictors, as 
well as their nature, affected model performance. We used 
the coefficients from our univariable logistic regression 
analyses to determine how informative different predic-
tors were. We then added significant predictors one-by-
one into our models, from the most informative to the 
least informative. At each point, we plotted model AUC 
and confidence intervals (CIs; obtained across the 10 
folds).

We performed all statistical analyses and visualizations 
in Python version 3.7.2 and R version 3.6.3. Our MLP and 
XGBoost models were implemented using the scikit-learn 
library.35 The study’s analytic code is available on GitHub 
(https://github.com/Maria​Eriks​son/Predi​cting-seizu​re-
outco​me-paper).

3   |   RESULTS

3.1  |  Patient cohort

A total of 797 children were identified as having un-
dergone first-time surgical resection or disconnection. 
Demographic information and clinical characteristics for 
these patients are displayed in Table S1. Data relating to 
semiology (past seizures and seizures at time of preopera-
tive evaluation) as well as interictal and ictal EEG charac-
teristics are displayed in Table S2. Genetic diagnoses are 
listed in Tables S3 and S4.

Seizure outcome at 1-year follow-up was available for 
709 patients, of which 67% were seizure-free. Of these, 
51% were receiving ASM, 34% were weaning ASM, and 
15% were not receiving ASM.

3.2  |  Relationships between variables

Relationships between demographic, clinical, and surgi-
cal variables are displayed in Figure 2. Full statistics are 
reported in Table S5.

3.3  |  Univariable logistic regression  
analyses

Univariable logistic regression analyses identified the 
following features as predictive of 1-year postoperative 
seizure freedom: handedness, educational status, genetic 
findings, age of epilepsy onset, history of infantile spasms, 
spasms at time of preoperative evaluation, number of 

seizure types at time of preoperative evaluation, total 
number of ASMs trialed (from time of epilepsy onset to 
time of preoperative evaluation), MRI bilaterality (unilat-
eral vs bilateral MRI abnormalities), MRI diagnosis, type 
of surgery performed, lobe operated on, and histopathol-
ogy diagnosis (Table S6).

3.4  |  Effect of model type on model 
performance

3.4.1  |  Logistic regression models

Our multivariable LR achieved an accuracy of 72% (95% 
CI = 68%–75%) and an AUC of .72 (range across the 10 
folds: .64–.82). When we assessed whether substituting 
MRI diagnosis with histopathology diagnosis would im-
prove model performance, we found that this alternative 
LR achieved a similar accuracy of 73% (95% CI = 69%–79%; 
AUC = .72; range across the 10 folds: .60–.77). There was 
no significant difference in performance between the LR 
that included MRI diagnosis and the LR that included his-
topathology diagnosis (McNemar's test, chi-square = .1, 
p = .8). This was likely due to the high degree of overlap 
between MRI and histopathology diagnoses (Figure S1).

F I G U R E  2   Relationships between demographic, clinical, and 
surgical variables. Relationships are shown both before and after 
correction for multiple comparison using the Holm method. We 
have highlighted relationships with seizure outcome using a yellow 
box. ASM, antiseizure medication; Num. ASM pre-op, number of 
antiseizure medications at time of preoperative evaluation; Num. 
ASM trialed, total number of different antiseizure medications 
trialed from epilepsy onset to preoperative evaluation.
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3.4.2  |  Multilayer perceptron and 
XGBoost models

Our MLP achieved an accuracy of 71% (95% CI = 67%–
74%) and an AUC of .70 (range across the 10 folds: 
.63– .82). Our XGBoost also achieved an accuracy of 71% 
(95% CI = 68%–75%) and an AUC of .70 (range across the 
10 folds: .62–.83).

3.4.3  |  External XGBoost model

When we applied the XGBoost model developed by 
Yossofzai et al.12 to our data, it achieved an accuracy of 
63% (95% CI = 59%–67%) and an AUC of .62.

3.4.4  |  Comparison of model performances

The AUCs of the respective models are compared in 
Figure  3A. There was no significant difference in per-
formance between our LR and MLP (McNemar's test, 
chi-square = .8, p = .4), our LR and XGBoost (McNemar's 
test, chi-square = .1, p = .8), or our MLP and XGBoost 
(McNemar's test, chi-square = .1, p = .8).

All three models performed better than the exter-
nal XGBoost model (McNemar's testLR, chi-square = 8.0, 
p = .005; McNemar's testMLP, chi-square = 6.4, p = .01; 
McNemar's testXGB own, chi-square = 6.8, p = .01). Our 
LR, MLP, and XGBoost models also performed signifi-
cantly better than model null accuracy (McNemar's 

testLR, chi-square = 8.7, p = .003; McNemar's testMLP, 
chi-square = 5.3, p = .02; McNemar's testXGB own, chi-
square = 7.6, p = .006), whereas the external XGBoost model 
did not (McNemar's testXGB external, chi-square = .6, p = .4).

3.5  |  Effect of sample size on model 
performance

Increasing our sample size within the limits of our cohort 
improved the performances of all our models (Figure 3B). 
However, visual inspection of model performance at in-
creasing sample sizes showed that model performance 
started to plateau at around N = 400, after which point 
increases in sample size followed the law of diminishing 
returns. In the case of our LR, an increase from N = 20 
to N = 120 led to a .08 increase in AUC (AUC = .593 
vs AUC = .674). However, corresponding increases of 
100 patients, from N = 200 to N = 300 patients and from 
N = 300 to N = 400 patients, led to .01 and <.01 increases 
in AUC, respectively (AUC = .689 vs .699 and AUC = .699 
vs AUC = .705). Expanding our cohort beyond its current 
size, up to N = 2000, did not substantially improve the per-
formances of any of our models (Figure 3B).

3.6  |  Effect of data inclusion on model 
performance

We found that adding more predictor features improved 
the performances of all models (Figure 4A and Figures S2 

F I G U R E  3   Impact of model type and sample size on model performance. (A) Receiver- operating characteristic (ROC) curves showing 
model performances. There was no significant difference in performance between our LR (purple), MLP (pink), and XGBoost (teal) models. 
All of our models performed significantly better than the XGBoost model recently developed by Yossofzai et al.12 (light blue). (B) The 
effect of sample size on model performance (accuracy). There was an improvement in model performance with increasing sample size for 
our LR, MPL, and XGBoost models, but only up until a certain point. After this, the models showed only marginal gains in performance. 
Extrapolating performance for sample sizes up to N = 2000 did not predict substantial improvement in model performance for any of our 
models. AUC, area under the (ROC) curve; LR, logistic regression; MLP, multilayer perceptron; ROC, receiver-operating characteristic.
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and S3). However, the greatest accuracy was achieved 
when data-driven feature selection was used to filter 
which clinical predictors should be included in the mod-
els (i.e., when the models included only the variables 
that were found to be significantly predictive of seizure 
outcome in our univariable logistic regression analyses; 
Figure 4B). When we added variables that were not sig-
nificantly predictive of seizure outcome in our univariable 
logistic regression analyses, model performance worsened 
(Figure 4B).

4   |   DISCUSSION

Up to one third of patients do not achieve seizure freedom 
through epilepsy surgery despite careful evaluation.1 There 
has been a longstanding history of trying to identify these 
patients preoperatively, both through traditional statistical 
modeling approaches and more complex machine learning 
techniques.3–5,7–29 These attempts have, however, had lim-
ited success. In this study, we explored if we could improve 
our ability to predict seizure outcome by training more 
complex models, recruiting larger training sample sizes, or 
incorporating more or different types of clinical predictors.

To investigate the effect of model type on our ability 
to predict seizure outcome, we trained three different 
models, a logistic regression (or LR) and two machine 
learning models—a multilayer perceptron (or MLP) and 
an XGBoost—on the same cohort. We showed that our 
LR performed as well as our MLP and XGBoost models. 
We also applied a recently published XGBoost model 
by Yossofzai et al.12 to our cohort and found that this 
model performed worse than our models (AUC = .62 vs 
AUC = .70–.72). It also performed worse on our cohort 
compared to the cohorts it was trained and tested on 
(AUC = .62 vs AUC = .73–.74).

To address the value of larger patient sample sizes, 
we investigated model performance on a range of sample 
sizes, up to N = 2000. We found that the performances of 
all models improved until around N = 400, after which 
point they began to plateau.

To address the influence of clinical predictors, we var-
ied both the number of predictors included in the models 
as well as the nature of these predictors. We demonstrated 
that using data-driven feature selection (i.e., including 
only variables that were predictive of seizure outcome in 
univariable logistic regression analyses) resulted in the 
best model performance, while including all collected 

F I G U R E  4   Impact of feature selection on model performance. (A) Receiver-operating characteristic (ROC) curves showing model 
performance for our LR models containing (1) only MRI diagnosis (red), (2) all predictors (orange), and (3) predictors identified through 
data-driven feature selection (green). Data-driven selection involved including only predictors that were significantly predictive of  
1-year postoperative seizure outcome as identified in univariable logistic regression analyses. Corresponding ROC curves showing model 
performances for our MLP and XGBoost models are displayed in Figures S2 and S3. (B) Effect of data-driven feature selection on model 
performance (AUC). Variables found to be significantly predictive of seizure outcome from univariable logistic regression analyses 
were added to the LR, from most information to least informative according to their coefficients. Model performance was best when all 
significantly predictive features were included in the model. Adding the remaining predictors collected for the study, that is, those that 
were not significantly predictive of seizure outcome, worsened model performance (far right). Points circled in black represent mean 
AUC obtained across all 10 folds. Noncircled points represent the AUCs obtained from each of the individual 10 folds. ASM, antiseizure 
medication; AUC, area under the (ROC) curve; LR, logistic regression; NS. predictors, non-significant predictors; Num. ASM trialed, total 
number of different antiseizure medication trialed from epilepsy onset to preoperative evaluation; Num. seiz. types, number of seizure types 
at time of preoperative evaluation; ROC, receiver-operating characteristic; Spasms hist., history of spasms; Spasms pre-op, spasms at time of 
preoperative evaluation.
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predictors led to a deterioration in model performance. Of 
interest, neither EEG nor semiology characteristics were 
predictive of seizure outcome in our univariable logistic 
regression analyses and were, therefore, not included in 
our models.

4.1  |  The illusory superiority of more 
complex models

There is a growing tendency to favor machine learn-
ing technology over traditional statistical modeling ap-
proaches when training models to predict postoperative 
seizure outcome. This is presumably due to an assumed 
superiority of highly sophisticated or complex models. As 
a result, a plethora of machine learning techniques have 
been deployed.7–29 It is, however, also increasingly recog-
nized that the potential gains in predictive accuracy that 
have been attributed to more complex algorithms may 
have been inflated,31,36 and that minor improvements ob-
served “in the laboratory” may not translate into the real 
world.31

Previous studies that have used both machine learning 
techniques and traditional statistical modeling approaches 
to predict postoperative seizure outcome have found that 
logistic regression models perform as well as, or even bet-
ter than, machine learning ones.8,9,25 To our knowledge, 
only one study by Yossofzai et al.12 has found that a ma-
chine learning model outperforms a logistic regression; 
however, this was a .01–.02 difference in AUC (.72 vs .73 in 
the train data set; .72 vs .74 in the test data set). This small 
improvement is unlikely to deliver an advantage in clin-
ical practice. At the same time, using machine learning 
models introduces complexity, which in turn complicates 
their interpretation, implementation, and validation, and 
increases the risk of overfitting.

4.2  |  Larger samples mean higher 
accuracy… but only up until a certain point

There exists a general consensus in the machine learning 
community that more data, or larger sample sizes, equates 
to better model performance.37,38 However, researchers 
have started to show that this is not always the case.39 We 
found that expanding our cohort beyond its current size 
(N = 797) nearly three-fold did not provide meaningful 
gains.

Estimating the point of diminishing returns is in-
valuable because, although there is an abundance of 
unlabeled clinical data in our era of Big Data, (human) 
annotated clinical data remain scarce. Its creation is 

time-consuming and requires the expertise of several 
clinical groups. Nevertheless, annotated data sets are 
essential in the creation of (supervised) learning algo-
rithms. Generating learning curves can, therefore, in-
form researchers of the relative costs and benefits of 
adding additional annotated data to their model.40 Still, 
it is important to note that this learning curve is only an 
estimate and that actual model performance could ex-
ceed these predictions. Oversampling techniques that 
generate synthetic data could provide a data set that 
is similar in size to our expanded (predicted) data set; 
however, these approaches carry a risk of overfitting, 
as the synthetic data that they generate may closely 
resemble the original data set in a way that new data 
may not. The only way to validate this prediction is, 
therefore, to collect a sample size of several thousands 
of patients.

4.3  |  In pursuit of (geographical) model 
generalizability

Machine learning in clinical research is placing an in-
creasing emphasis on model generalizability, where the 
highest level of evidence is achieved from applying mod-
els externally—to new centers. When we tested the model 
by Yossofzai et al.12 on our data, we found that it did not 
generalize well. This may at first glance seem surprising, 
as there is a striking similarity between our cohort and the 
cohort of Yossofzai et al.12—not only in terms of sample 
size but also in terms of patient characteristics and vari-
ables found to be predictive of seizure outcome. However, 
it also highlights a common issue related to the use of ma-
chine learning, namely, the tendency for models to overfit 
to local data. We, therefore, expect that a similar decrease 
in model performance would be demonstrated if another 
center were to use the machine learning models that we 
trained.

Different epilepsy surgery centers show variation in 
which diagnostic and therapeutic procedures are avail-
able, for which patients they are requested, and with 
which specifications they are carried out.41 Local practices 
also influence how data are annotated. Clinical data are 
interpreted by experts who assign a wide range of labels, 
from MRI diagnosis to epilepsy syndromes. Although of-
ficial classification systems for annotation procedures ex-
ist,42–47 individual studies often choose to—or are forced 
to—categorize their data ad hoc, primarily due to the 
restraints introduced by the retrospective nature of their 
data. Furthermore, not all experts will agree on the same 
label, which is evidenced by a lack of agreement regard-
ing interpretation of EEG,48–50 MRI,51 positron emission 

 15281167, 2023, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/epi.17637 by U

niversity C
ollege L

ondon U
C

L
 L

ibrary Services, W
iley O

nline L
ibrary on [03/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



2022  |      ERIKSSON et al.

tomography (PET),51 and histopathological data.42 It is 
thus possible that although our cohort and the cohort of 
Yossofzai et al.12 look similar on the surface, they may rep-
resent patients who have been characterized in a subtly 
different manner.

4.4  |  Limitations of the current study

The primary limitation of our study is that it is a retro-
spective study, which uses data originally obtained to un-
derstand patient disease and support clinical care, rather 
than to enable data analysis. These data are, therefore, at 
risk of being biased and incomplete.

4.4.1  |  Biased data

Presurgical evaluation is largely standardized in that all 
patients undergo a full clinical history, structural MRI, 
and scalp-  or video-EEG, but the extent of further in-
vestigations will be patient dependent.52 To mitigate the 
occurrence of bias, we used a minimal data set, which 
included only clinical variables typically obtained for all 
epilepsy surgery patients. As such, we did not train our 
model using PET, single-photon emission computed to-
mography (SPECT), magnetoencephalography (MEG), or 
functional MRI (fMRI) measures. One exception to this 
was the inclusion of genetic diagnosis, which we included 
despite not all patients having undergone genetic testing. 
The predictive value of genetic information in surgery 
candidate selection has not been systematically inves-
tigated.53 Consequently, we sought to contribute to this 
emerging area of research and provide initial evidence for 
its importance.

4.4.2  |  Incomplete data

Related to the limitation of biased data is the limitation 
of incomplete data. Similar to past retrospective studies 
that have developed models for the prediction of seizure 
outcome after epilepsy surgery, we had a considerable 
amount of missing data. There are multiple ways of han-
dling incomplete data sets, including deleting instances or 
replacing them with estimated values—a method known 
as imputation. Imputation techniques must, however, be 
used with caution, as they have limitations and can im-
pact model performance.54 We, therefore, chose to drop 
instances where continuous data points were missing be-
fore including them into the model training data sets, and 
classified missing categorical data points as such, rather 
than using imputation.

4.5  |  Moving forward

Taken together, our findings suggest that (1) traditional 
statistical approaches such as logistic regression analyses 
are likely to perform as well as more complex machine 
learning models (when using routinely collected clinical 
predictors similar to those described here) and have ad-
vantages in interpretability, implementation, and general-
izability; (2) collecting a large sample is important because 
it improves model performance and reduces overfitting, 
but including more than a thousand patients is unlikely 
to generate significant returns on data sets similar to ours; 
(3) model improvement is likely to come from data-driven 
feature selection and exploring the inclusion of features 
that have thus far been overlooked or not undergone ex-
ternal validation due to barriers in study replication (dis-
cussed below).

Based on these findings, we make recommendations to 
advance our ability to predict seizure outcome after epi-
lepsy surgery (Table 1). Surgery centers around the world 
must collaborate to produce high-quality data for research 
purposes. Although models trained on single-center data 
sets are likely to produce higher model performances 
than multi-center data sets, they may not be suitable 
for use by other surgery centers. Critically, data must be 
collected and curated in a standardized manner, as high-
lighted by experts55 and similar to recent multi-center 
endeavors.9,56,57 Here it will be important to distinguish 
between investigating variables that may be predictive of 
outcome and identifying variables that can (feasibly) be 
included as predictors in a clinical decision-making tool. 
For the purpose of developing a clinical decision-making 

T A B L E  1   Recommendations for future research.

1. Epilepsy surgery services should collaborate to create high-
quality data sets for research purposes

2. Data collection, annotation, and categorization should be 
standardized across surgery centers

3. Variables included as predictors in a clinical decision-making 
tool should be limited to those that

(i) are routinely collected for all epilepsy surgery patients

(ii) can be obtained preoperatively, and

(iii) are significantly predictive of outcome

4. Data should be harmonized across surgery centers to tackle 
variability in data acquisition (e.g., variability induced by 
differences in MRI scanners and protocols)

5. Researchers should openly share their code on platforms 
(such as GitHub; https://github.com) to maximize 
transparency, support reproducibility, and enable 
external validation. In cases where code cannot be shared, 
researchers should share their models in a way that they can 
be validated by external centers
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tool, we suggest including only variables that are rou-
tinely collected for all epilepsy surgery patients at most 
centers, to avoid introducing bias into the model. In other 
words, researchers should carefully consider the added 
value of modalities such as MEG, PET, SPECT, and fMRI. 
It is notable that only variables obtained prior to surgery 
should be included in the model, as the aim is to create 
a predictive model. This means excluding variables such 
as postoperative measurement of resection and histopa-
thology diagnosis. Reassuringly, we have shown that MRI 
diagnosis provides information similar to histopathology 
diagnosis. We also echo past recommendations53 in that 
we suggest avoiding variables that have repeatedly failed 
to predict outcome, as these have been shown to worsen 
model performance.

Training models using only clinical information is 
unlikely to procedure high model performance. Instead, 
better data must also entail new data. The inclusion of 
additional predictors to improve model performance may 
involve extracting quantitative features from preoperative 
MRI or EEG (as several studies have done13–29), character-
izing the epileptogenic network through computational 
modeling,58 measuring lesion overlap with eloquent cor-
tex,59 or adopting a network analysis approach.60 Here, 
it is important to note that machine learning techniques 
could provide superior performance compared to tradi-
tional statistical approaches if quantitative MRI and/or 
EEG features are used; however, to our knowledge, only 
one imaging study has to date compared these two ap-
proaches and found that they performed similarly well.25

It is important that all model software is made 
available—either as ready-to-use tools or openly shared 
code on platforms such as GitHub. Past studies have re-
ported models capable of achieving accuracies of >90% 
using quantitative features extracted from MRI and 
EEG14,15,19,28; however, none of these findings can be re-
produced, and none of these models can be adopted by 
other centers, as there is insufficient information about 
how they were generated. Yossofzai et al.12 are to be com-
mended for sharing their model in a way that allowed for 
it to be externally tested by ourselves and others.

5   |   CONCLUSIONS

Accurate prediction of seizure outcome after epilepsy 
surgery remains difficult. We highlight the importance 
of comparing traditional statistical modeling to complex 
machine learning techniques, as we show that these two 
approaches may perform equally well. We also demon-
strate the importance of performing external validation 
of machine learning models, as we show that algorithms 
may underperform on other centers' data. Based on our 

findings, we present recommendations for future re-
search, including the need for epilepsy services to collabo-
rate in the creation of standardized data sets, the value of 
carefully choosing predictor variables for modeling, and 
the benefit of sharing models and code openly.
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